1-x^2分之一的不定积分

1-x^2分之一的不定积分

以下是关于1-x^2分之一的不定积分的介绍

∫1/(1-x^2)dx=1/2∫[1/(1-x)+1/(1+x)]dx=1/2[-ln(1-x)+ln(1+x)]+C=1/2ln[(1+x)/(1-x)]+C。在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′=f。1-x^2分之一的不定积分不定积分的公式1、∫adx=ax+C,a和C都是常数2、∫x^adx=[x^(a+1)]/(a+1)+C,其中a为常数且a≠-13、∫1/xdx=ln|x|+C4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠15、∫e^xdx=e^x+C6、∫cosxdx=sinx+C7、∫sinxdx=-cosx+C8、∫cotxdx=ln|sinx|+C=-ln|cscx|+C

关于更多1-x^2分之一的不定积分请留言或者咨询老师

  • 姓名:
  • 专业:
  • 层次:
  • 电话:
  • 微信:
  • 备注:
文章标题:1-x^2分之一的不定积分
本文地址:http://ldp.55xw.net/show-336041.html
本文由合作方发布,不代表职业教育网立场,转载联系作者并注明出处:职业教育网

热门文档

推荐文档